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Abstract. A Costas array is a permutation array in which the vectors
joining pairs of 1s are all distinct. The toroidal vectors of a permutation
array are the vectors occurring when the array is written on a torus,
and the deficiency of a permutation array of order n is the number of
toroidal vectors, out of the (n − 1)2 possible, that are missing from the
array. The smallest deficiency among all permutation arrays of order
q − 1, where q is a power of a prime other than 3, is known, and it is of
interest to find examples of permutation arrays attaining this minimum
value. The deficiency of Costas arrays is studied computationally and
theoretically. It is shown that all Welch Costas arrays of a given order
have the same deficiency. It is shown that the deficiency of Golomb-
Rickard Costas arrays of order q − 1 attains the minimum value over all
permutation arrays when q is a power of a prime other than 3. Com-
putational experiments show that the deficiency distribution of Costas
arrays of a given order acts as a filter that highlights the Welch Costas
arrays, isolates the Golomb-Rickard Costas arrays, and gives further
insights into the structure of other Costas arrays. In particular, four
Costas arrays with exceptionally small deficiency are recognised, and it
is asked if they could be used to identify a new algebraic construction
for Costas arrays.

1. Introduction

Costas arrays were introduced in 1965 by J. P. Costas as a means of
improving the performance of radar and sonar systems [3].

Definition 1.1. A permutation array A of order n is a Costas array if the
vectors formed by joining pairs of 1s in A are all distinct.

For example, the array in Figure 1 (in which dots represent 1s and blanks
represent 0s) is a Costas array of order 6. In Costas’s original application,
the radar or sonar frequency fi is transmitted in time interval tj if and only
if position (i, j) of the Costas array contains a 1.
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Figure 1. A Costas array of order 6

We use the standard labelling convention for arrays (first index down-
wards, second index rightwards, both indices start from 1). It is sufficient
to consider only one of the vectors joining each pair of 1s in a Costas ar-
ray; by convention, we choose the vector pointing rightwards. We follow
other authors in also using the conflicting labelling convention for vectors
(first component horizontal, second component vertical), leading to Defini-
tion 1.2.

Definition 1.2. The vector between ‘1’ entries Ai,j and Ak,` of a permuta-
tion array (Ai,j), where j < `, is (` − j, k − i).

(As a consequence of Definition 1.2, the positive direction for the second
component of the vector is downwards.)

A Costas array (Ai,j) corresponds to a permutation α ∈ Sn, using the
convention that Ai,j = 1 if and only if α(j) = i. For example, the Costas
array of Figure 1 corresponds to the permutation α = [3,1,6,2,5,4]. Each
Costas array A belongs to an equivalence class formed by its orbit under
the action of the dihedral group D4. The equivalence class of a Costas array
of order greater than 2 has size four or eight, depending on whether its
elements have reflective symmetry about a diagonal.

Early research on Costas arrays led to two main algebraic construction
techniques, known as the Welch construction and the Golomb construction.
Both of these constructions make use of primitive elements of the finite
field Fq, and generate Costas arrays for infinitely many orders. The Welch
construction was presented by L.R. Welch in 1982, but it has recently been
recognised [15] that it was discovered by Gilbert [7] in 1965; as a result,
Gilbert is now considered the co-inventor of Costas arrays.

Theorem 1.3 (Welch Construction W1(p, φ, c) [7]). Let φ be a primitive
element of Fp, where p is a prime, and let c be a constant. Then the permu-
tation array (Ai,j) of order p − 1 with

Ai,j = 1 if and only if φj+c−1
≡ i (mod p)

is a Costas array.

Varying the parameter c in the range 0, . . . , p−2 corresponds to cyclically
shifting the columns of A. Consequently, every W1(p, φ, c) Welch Costas
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array is singly periodic: if copies of the array are placed side-by-side to form
a horizontal tiling, any p−1 consecutive columns form a Welch Costas array.

Theorem 1.4 (Golomb construction G2(q, φ, ρ) [8]). Let φ and ρ be (not
necessarily distinct) primitive elements of Fq, where q is a power of a prime.
Then the permutation array (Ai,j) of order q − 2 for which

Ai,j = 1 if and only if φi
+ ρj

= 1

is a Costas array.

In addition to the algebraic constructions, there are a number of secondary
construction procedures which involve modifying a known Costas array in
a way that preserves the Costas property, where possible, to produce an
inequivalent Costas array. Many of these procedures can be systematically
applied to certain Welch or Golomb Costas arrays and are guaranteed to
produce a Costas array. In other cases there is no guarantee, and one must
test whether the resulting array has the Costas property. These variants
are summarised in [16] and discussed in detail in [3]. We shall be interested
in the Golomb-Rickard variant [14] of the Golomb construction, in which
a Golomb Costas array of order q − 2 is augmented by the inclusion of an
additional lowermost row of 0s and an additional rightmost column of 0s,
and the entry at the intersection of the additional row and column is set to 1.
This variant construction succeeds if one or more of the cyclic row/column
permutations of the resulting (q−1)× (q−1) array has the Costas property.

Costas arrays have been enumerated up to order 29 by exhaustive com-
puter search [6]. The vast majority of these Costas arrays are not explained
by any of the known construction techniques. There is no value of n for which
a Costas array of order n is known not to exist; the smallest values of n for
which existence is currently open are 32 and 33. Comprehensive databases
of Costas arrays have been published by Beard [1] and by Rickard [13].

In this paper, we analyse the vectors joining pairs of 1s in Costas arrays
when the vectors are allowed to “wrap around” both horizontally and ver-
tically (or, equivalently, when the arrays are viewed as being written on the
surface of a torus).

Definition 1.5. Let (Ai,j) be an m × n array of 0s and 1s. The toroidal
vector from ‘1’ entry Ai,j to ‘1’ entry Ak,` is ((`− j) mod n, (k− i) mod m).

Each pair of 1s in a permutation array is joined by two (possibly identical)
toroidal vectors, each having both components positive. For example, the
1s at positions (3,1) and (2,4) in the Costas array shown in Figure 1 are
separated by the toroidal vector (3,5) and by the toroidal vector (3,1).

A permutation array of order n contains 2(n
2
) = n(n − 1) toroidal vectors

drawn from the set {1, . . . , n − 1}2. Therefore every nontrivial permutation
array contains n − 1 repeated toroidal vectors (counting multiplicity). This
prompts the natural questions: are there permutation arrays of order n > 2
containing every possible toroidal vector (w,h) ∈ {1, . . . , n − 1}2, and if not
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then how few of the (n − 1)2 possible values (w,h) can be missing? These
questions were addressed by Panario, Stevens and Wang [12] (the answer to
the first question being no), and we summarise their findings in Theorem 1.7.
We present a proof of this theorem which is inspired by that of [12], but
which is more visual.

Definition 1.6. Let A be a permutation array of order n. The deficiency
of A is the number D(A) of toroidal vectors in {1, . . . , n−1}2 missing from A.

Theorem 1.7 ([12, Theorem 1]). Let A be a permutation array of order
n > 2. Then

D(A) ≥

⎧⎪⎪
⎨
⎪⎪⎩

n − 1 for n odd
n − 3 for n even.

Proof. Let T = (Ti,j) be the (n− 1)× (n− 1) array whose (w,h) entry is the
number of times toroidal vector (w,h) occurs in the array A.

Suppose there is no ‘0’ entry in row w of T . Since the sum of all entries in
row w of T is n, the multiset of entries in row w of T is then {1,1, . . . ,1,2}.
Let the single ‘2’ entry in this row of T occur in column h = h(w), so that
the multiset of heights of the toroidal vectors of width w in A is the multiset
union {1,2, . . . , n−1}∪{h}. Since each ‘1’ entry of A has one toroidal vector
of width w entering it and another leaving it, these heights sum to zero
modulo n and so

(1.1) 0 ≡
n(n − 1)

2
+ h (mod n).

In the case that n is odd, this gives the contradiction h ≡ 0 (mod n). We
conclude that for n odd, every row w of T contains a ‘0’ entry and therefore
D(A) ≥ n − 1, as required.

Henceforth take n to be even. Equation (1.1) now gives h = n
2 , and so

(1.2) if there is no ‘0’ entry in row w of T then Tw, n
2
= 2.

Consider the regions of T shown in Figure 2. For 1 ≤ i ≤ 4, let zi and z′i
be the number of ‘0’ entries in regions Ri and R′

i, respectively. Since the
toroidal vector (w,h) is missing from A if and only if the toroidal vector
(n−w,n−h) is missing, zi = z′i for each i. Since rows 1, . . . , n

2 −1 of T contain
exactly z1+z2+z3 entries ‘0’, at least max(0, n

2 −1−(z1+z2+z3)) of these rows
contain no ‘0’ entry. Therefore by (1.2), at least max(0, n

2 −1−(z1+z2+z3))
of the entries of R3 are 2. Since R3 has a total of n

2 − 1− z3 nonzero entries,
it follows that the sum of all entries in R3 is at least n − 2 − z1 − z2 − 2z3.

By the same argument with rows and columns interchanged, the sum of
all entries in R4 is at least n − 2 − z1 − z2 − 2z4. Let z be 1 if Tn

2
, n
2
= 0, and

0 otherwise, so that Tn
2

, n
2
≥ 1− z. Then comparison of the sum of all entries

in column n
2 of T plus the sum of all entries in row n

2 of T , namely 2n, with
the above bounds gives

2n ≥ 2(n − 2 − z1 − z2 − 2z3) + 2(n − 2 − z1 − z2 − 2z4) + 2(1 − z).
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Figure 2. Regions of T for the proof of Theorem 1.7

Therefore D(A) = 2(z1 + z2 + z3 + z4) + z ≥ n − 3, as required. �

Definition 1.6 was introduced in the paper [12], which describes how the
smallness of the deficiency of a permutation array corresponding to α ∈ Sn

measures how close the n − 1 “difference” mappings j ↦ α(j + w) − α(j)
with w ≠ 0 are to being surjective. The authors of [12] sought permutation
arrays whose deficiency attains the lower bound of Theorem 1.7. They used
permutation polynomials over finite fields to construct permutation arrays of
order q−1, where q is a prime power, having small deficiency. A related paper
[11], correcting some oversights in [12], showed that the deficiency of these
constructed permutation arrays attains the lower bound of Theorem 1.7
when q is a power of a prime other than 3. Otherwise, when q is a power
of 3, the deficiency is one greater than the lower bound (and in this case it is
not yet known whether the lower bound of Theorem 1.7 can be attained by
some permutation array). The authors of [11] stated (p. 7651): “Functions
that meet these bounds [of Theorem 1.7, or those for the related property
of ambiguity ] are of particular interest”.

This paper studies the deficiency of Costas arrays. In Section 2 we show
that all Welch Costas arrays of a given order n > 1 have the same deficiency,
but that the same is not in general true of Golomb Costas arrays. We also
examine the deficiency of all Costas arrays of order n ≤ 29 numerically. In
Section 3 we note that the minimum deficiency of Costas arrays of order n is
anomalously small for certain values of n ≤ 29 of the form q−1 (where q is a
prime power), and that these anomalous minimum deficiencies are at most
one greater than the minimum value among all permutation arrays of or-
der n. We explain how all these anomalous minimum deficiencies arise from
Golomb-Rickard Costas arrays, and describe exactly when the deficiency of
a Golomb-Rickard Costas array attains the lower bound of Theorem 1.7 and
when it is one greater than this bound. In this way we provide new examples
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of functions that were described in [11] as being of particular interest; fur-
thermore, these new examples have the additional property of corresponding
to Costas arrays. Some of these functions are related to the construction
of [11, Theorem 14], although the connection with Golomb-Rickard Costas
arrays was not recognised in [11]. In Section 4 we consider in more detail
the deficiency distribution of Costas arrays for each order n ≤ 29. We show
that these distributions act as a filter that highlights the Welch Costas ar-
rays, isolates the Golomb-Rickard Costas arrays, and gives further insights
into the structure of other Costas arrays. In particular, we recognise four
Costas arrays with exceptionally small deficiency, that are not explained by
any known construction, and ask whether they could be used to identify a
new algebraic construction for Costas arrays. In Section 5 we demonstrate
connections with the work of several other authors.

2. Deficiency of Costas arrays

In this section, we consider the deficiency of Welch Costas arrays theo-
retically. We also consider the deficiency of Golomb Costas arrays, and of
all Costas arrays of order at most 29, numerically.

In Corollary 2.4, we prove that any two Welch Costas arrays of order n > 1
have the same deficiency. To do so, we consider the decimation of Welch
Costas arrays.

Definition 2.1. Let A = (Ai,j) be an n × n array and let k ∈ N satisfy
gcd(k,n) = 1. The k-decimation of A with respect to columns is the n × n
array (Ai,((jk−1)mod n)+1).

The index ((jk − 1) mod n) + 1 in Definition 2.1 is the unique integer in
{1, . . . , n} congruent to jk modulo n. This expression is used instead of
the simpler expression (jk) mod n in order to account for the case when
(jk) mod n = 0, because columns of A are numbered from 1 to n rather
than from 0 to n − 1. We can regard the k-decimation of A with respect to
columns as the array whose columns (in order) are column k of A followed
by every kth column of A, wrapping around as necessary. This leads to the
following remark.

Remark 2.2. The toroidal vector (w,h) is contained in the k-decimation
of A with respect to columns exactly when the toroidal vector ((wk) mod
n,h) is contained in A. (We can use the simple expression (wk) mod n
here, since 0 < w < n and gcd(k,n) = 1, so (wk) mod n ≠ 0.)

Proposition 2.3. Let p be prime, let φ be primitive in Fp and let k ∈ N
satisfy gcd(k, p − 1) = 1. Then the W1(p, φ

k,1) Welch Costas array is the
k-decimation with respect to columns of the W1(p, φ,1) Welch Costas array.

Proof. By the Welch construction, for 1 ≤ i, j ≤ p − 1, there is a ‘1’ entry
at position (i, j) in W1(p, φ

k,1) exactly when i ≡ φjk (mod p). This occurs
exactly when there is a ‘1’ entry at position (i, `) in W1(p, φ,1), where ` is
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the unique integer in {1, . . . , p − 1} congruent to jk modulo (p − 1). This
gives the value of ` as ((jk − 1) mod (p− 1))+ 1, and the result follows from
Definition 2.1. �

Corollary 2.4. Let p be prime, let φ be primitive in Fp, and let W be a
Welch Costas array of order p − 1. Then there is a one-to-one multiplicity-
preserving correspondence between the multiset of toroidal vectors in W and
the multiset of toroidal vectors in the W1(p, φ,1) Welch Costas array.

Proof. Let W be the W1(p, ρ, c) Costas array, where ρ is primitive in Fp and
0 ≤ c ≤ p−2. Since cyclic column permutation does not affect toroidal vectors,
we may take c = 1. Since φ and ρ are both primitive in Fp, we have ρ = φk

for some k ∈ N satisfying gcd(k, p − 1) = 1. Therefore by Proposition 2.3,
W is the k-decimation with respect to columns of W1(p, φ,1). Then by
Remark 2.2, the toroidal vector (w,h) is contained in W exactly when the
toroidal vector ((wk) mod (p − 1), h) is contained in W1(p, φ,1). �

In particular, Corollary 2.4 implies that all Welch Costas arrays of order
p− 1 have the same deficiency. Table 3 gives the deficiency of Welch Costas
arrays of order n ≤ 40, obtained numerically.

Order 1 2 4 6 10 12 16 18 22 28 30 36 40
Deficiency 0 0 1 4 12 21 37 48 72 121 140 209 253

Table 3. Deficiency of Welch Costas arrays

In contrast to the situation for Welch Costas arrays, the deficiency D(G)

is not necessarily the same for all Golomb Costas arrays G of a given order.
Figure 4 displays the minimum, mean and maximum deficiency of Golomb
Costas arrays of order n ≤ 39. These data suggest that, roughly speaking,
D(G) grows faster than linearly with n.

Figure 5 shows the minimum, mean and maximum deficiency of all Costas
arrays of order n for 2 ≤ n ≤ 29, calculated using the database [13] of Costas
arrays up to order 29.

3. Outlying minimum deficiency values for Costas arrays of
order n

A striking feature of Figure 5 is the outlying minimum deficiency values
for several orders n ≥ 8. These outlying values, together with values for some
orders n < 8, are listed in Table 6. For n > 2, each of these outlying deficiency
values attains the lower bound of Theorem 1.7 (which is the minimum value
over all order-n permutation arrays), except that the value for order 8 and
26 is one greater than the lower bound. In this section we explain how the
values in Table 6 arise.
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Figure 4. Deficiency of Golomb Costas arrays

Figure 5. Deficiency of Costas arrays up to order 29

Order 2 3 4 6 7 8 10 12 15 16 18 22 26 28
Minimum deficiency 0 2 1 3 6 6 7 9 14 13 15 19 24 25

Table 6. Outlying minimum deficiency values

Definition 3.1. Let G be a Golomb Costas array of order q − 2. The aug-
mented Golomb Costas array G++ associated with G is the (q − 1) × (q − 1)
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array formed by adding a row of 0s on the bottom of G and a column of 0s
on the right of G.

For example, let G be the G2(8, x+1, x) Costas array, with F8 constructed
using the primitive polynomial x3+x+1. The augmented array G++ is shown
in Figure 7.

●

●

●

●

●

●

Figure 7. An augmented Golomb Costas array

Proposition 3.2 shows that an augmented Golomb Costas array G++ has no
repeated toroidal vectors (which can be inferred from part of the discussion
of Section II.C of Beard et al. [2]), and specifies exactly which toroidal
vectors are missing. The derivation of Proposition 3.2 is as in the proof
of Lemma 1 of [5], except that we replace G with G++ since the rows and
columns of a Golomb Costas array both have period q − 1.

Proposition 3.2. Let q be a prime power, let φ and ρ be primitive in Fq

and let G be the G2(q, φ, ρ) Costas array. Then G++ contains the toroidal
vector (w,h) ∈ {1,2, . . . , q − 2}2 exactly once if φh ≠ ρw and otherwise never.
Furthermore, if the toroidal vector (w,h) is contained in G++ starting from
position (i, j), then

(3.1) ρj
= 1 − φi

= (φh
− ρw

)
−1

(φh
− 1).

Proof. Let (w,h) ∈ {1,2, . . . , q − 2}2. By the Golomb construction, the
toroidal vector (w,h) occurs in G++ starting from position (i, j) if and only
if there exist i, j ∈ {1, . . . , q − 2} such that

φi
+ ρj

= 1 and(3.2)

φi+h
+ ρj+w

= 1.(3.3)

(For the “if” part of the statement, we must ensure that (3.3) does not
introduce solutions involving a ‘1’ entry in the additional row or column
of G++. Such solutions would have i + h = q − 1 or j + w = q − 1, and are
excluded because φ and ρ are primitive in Fq.)

Multiply (3.2) by φh and subtract (3.3) to give ρj(φh − ρw) = φh − 1. If
φh = ρw then this has no solution. Otherwise,

ρj
= (φh

− ρw
)
−1

(φh
− 1),
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which has a unique solution for j ∈ {1, . . . , q − 2} since φh ≠ 1 and ρw ≠ 1.
Then (3.2) has a unique solution for i ∈ {1, . . . , q − 2}, since ρj ∉ {0,1}. �

Viewing an augmented Golomb Costas array G++ as being written on the
surface of a torus provides an alternative interpretation of the Golomb-
Rickard construction, which involves adding a row and column to a Golomb
Costas array, with a ‘1’ at their intersection, and then testing all cyclic
row/column permutations of the resulting (q − 1) × (q − 1) array for the
Costas property [14]. Indeed, we may view the Golomb-Rickard construction
as starting with the toroidal G++ array, adding a ‘1’ at the intersection of
its additional row and column, and then trying to “cut” the torus along a
vertical and a horizontal boundary so that the resulting (q−1)×(q−1) array
in the plane has the Costas property. The list of toroidal vectors present in
G++ is known by Proposition 3.2; we wish to cut the torus so that at least
one of each pair of repeated toroidal vectors, arising from the introduction
of the extra ‘1’, is eliminated. Theorem 3.3 determines the deficiency of a
Golomb-Rickard Costas array.

Theorem 3.3. Let q > 2 be a power of a prime p, let φ and ρ be primitive
in Fq and let R be a Golomb-Rickard Costas array of order q − 1 obtained
from the G2(q, φ, ρ) Golomb Costas array. Then D(R) = q −min(p,4).

Proof. Define the set

S = {(w,h) ∈ {1, . . . , q − 2}2
∶ ρw

= φh
},

and, for p > 2, let (w∗, h∗) be the element of this set for which ρw = φh =
p+1
2 .

We shall show that the set M of toroidal vectors missing from R is

(3.4) M =

⎧⎪⎪
⎨
⎪⎪⎩

S for p = 2
S ∖ {(w∗, h∗), (q − 1 −w∗, q − 1 − h∗)} for p > 2,

so that

D(R) = ∣M ∣ =

⎧⎪⎪
⎨
⎪⎪⎩

q − 2 for p = 2
q − 2 − ∣{(w∗, h∗), (q − 1 −w∗, q − 1 − h∗)}∣ for p > 2.

The vectors (w∗, h∗) and (q − 1 − w∗, q − 1 − h∗) are distinct exactly when
p > 3 because

(w∗, h∗) = (q − 1 −w∗, q − 1 − h∗) ⇔ w∗
= h∗ =

q − 1
2

⇔ ρw∗
= φh∗

= −1

⇔
p + 1

2
= −1

⇔ p = 3.
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We therefore conclude that

D(R) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

q − 2 for p = 2
q − 3 for p = 3
q − 4 for p > 3,

as required.
We now prove (3.4). By Proposition 3.2, the set of toroidal vectors miss-

ing from G++ is S. The Golomb-Rickard Costas array R contains the same
multiset of toroidal vectors as the array obtained by adding a ‘1’ at position
(q − 1, q − 1) of G++. The two toroidal vectors formed between this new ‘1’
and the ‘1’ at position (i, j), where i and j satisfy

(3.5) φi
+ ρj

= 1

by the Golomb construction, are (j, i) and (q − 1 − j, q − 1 − i).
The introduction of the new ‘1’ reduces the size of the set of missing

toroidal vectors when one or both of (j, i) and (q − 1 − j, q − 1 − i) belongs
to S. This occurs exactly when

(3.6) ρj
= φi.

Equations (3.5) and (3.6) have no solution for p = 2 (in which case M = S),
and the unique solution ρj = φi =

p+1
2 for p > 2 (in which case (j, i) =

(w∗, h∗)). This establishes (3.4). �

Theorem 3.3 explains the outlying minimum deficiency values in Table
6, which occur exactly at orders q − 1 ≤ 28 for which there is a Golomb-
Rickard Costas array. (There is no such outlying minimum deficiency value
for order 24 because there is no Golomb-Rickard Costas array of this order.)
In fact, analysis of the database [13] of Costas arrays up to order 29 shows
that Golomb-Rickard Costas arrays are the only Costas arrays attaining the
minimum values in Table 6.

Corollary 3.4. Let q > 3 be a power of a prime p, let φ and ρ be primitive
in Fq and let R be a Golomb-Rickard Costas array of order q − 1 obtained
from the G2(q, φ, ρ) Golomb Costas array. Then the deficiency of R attains
the minimum value over all permutation arrays of order q − 1 when p ≠ 3,
and is at most one greater than the minimum value when p = 3.

Proof. By Theorem 1.7, the deficiency of a permutation array of order
q − 1 > 2 is at least

⎧⎪⎪
⎨
⎪⎪⎩

q − 2 for p = 2
q − 4 for p odd,

and this bound can be attained when p ≠ 3 [11]. The result follows from
Theorem 3.3. �

The special case φ = ρ of Proposition 3.2, Theorem 3.3 and Corollary 3.4
is related to the construction of [11, Theorem 14], although the connection
with Golomb and Golomb-Rickard Costas arrays was not recognised in [11].
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(a) Order 15 (b) Order 16

Figure 8. Deficiency distribution for inequivalent Costas
arrays of order 15 and 16

4. Deficiency distribution for Costas arrays of order n ≤ 29

Figure 5 shows the minimum, mean and maximum deficiency (number of
missing toroidal vectors) of Costas arrays of order n for each n ≤ 29. In this
section we consider in more detail the deficiency distribution for each of these
orders. We shall see that these distributions act as a filter that highlights
the Welch Costas arrays, isolates the Golomb-Rickard Costas arrays, and
gives further insights into the structure of other Costas arrays.

Figures 8(a) and 8(b) show the deficiency distribution over all equivalence
classes of Costas arrays of order 15 and 16, respectively. (All elements
of an equivalence class of Costas arrays have the same deficiency.) These
orders were chosen to represent the general trends observed by considering
all orders, while also providing examples of several anomalous features. We
begin by describing two features of the distributions that can be explained
by the results of Sections 2 and 3.

Firstly, Figure 8(b) has a spike representing 40 Costas arrays having
D = 37, of which 36 are Welch Costas arrays. We know from Corollary 2.4
that all Welch Costas arrays of order p − 1 have the same deficiency, and
the location of the “Welch spike” for p − 1 ≤ 40 is given in Table 3. For all
orders n ≤ 29, the location of the Welch spike is consistently smaller than
the median deficiency.

Secondly, Figure 8(b) has a smaller spike representing 16 Costas arrays
with D = 13, all of which are Golomb-Rickard Costas arrays; likewise, Fig-
ure 8(a) has a spike representing three Costas arrays with D = 14, all of
which are also Golomb-Rickard Costas arrays. Provided there is at least one
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Golomb-Rickard Costas array of order q − 1, the location of the “Golomb-
Rickard spike” is given by Theorem 3.3. For all prime powers q ≤ 29 except
25, there is a Golomb-Rickard Costas array of order q−1, the location of the
Golomb-Rickard spike is at the extreme left of the deficiency distribution,
and Golomb-Rickard Costas arrays are the only arrays contributing to the
spike.

When the Welch spike and the Golomb-Rickard spike (if present) are
disregarded, Figures 8(a) and 8(b) represent a typical background deficiency
distribution for Costas arrays of odd order and even order, respectively.
Unlike the Welch and Golomb-Rickard Costas arrays, the Golomb Costas
arrays form part of the background distribution (for orders q − 2 where q is
a prime power).

We observe that the Costas arrays represented in Figure 8(a) have only
even deficiencies. We now show that this is a general property of permuta-
tion arrays of odd order.

Proposition 4.1. Let A be a permutation array of odd order. Then D(A)

is even.

Proof. The toroidal vector (w,h) is missing from A if and only if the toroidal
vector (n−w,n−h) is missing. Since n is odd, we have (w,h) ≠ (n−w,n−h)
and so the toroidal vectors missing from A can be partitioned into distinct
pairs. �

We further observe that the Costas arrays represented in Figure 8(b) have
odd deficiency more often than they have even deficiency. This appears to
be a general property of inequivalent Costas arrays of even order.

Observation 4.2. For each even n ≤ 28, Costas arrays of order n have odd
deficiency more often than they have even deficiency.

A similar argument to that used in the proof of Proposition 4.1 shows
that the toroidal vectors missing from a Costas array of even order n can be
partitioned into distinct pairs, except for (n

2 ,
n
2 ). Observation 4.2 therefore

implies that, for each even n ≤ 28, the toroidal vector (n
2 ,

n
2 ) is missing from

a Costas array of order n more often than not.
We have now accounted for all apparent features of the deficiency distri-

bution for Costas arrays of order at most 29, with two exceptions: order 18
and order 22.

The order-18 distribution, shown in Figure 9(a), contains a Golomb-
Rickard spike at D = 15 and a Welch spike at D = 48. After disregarding
these, there remains one outlying bar representing a single Costas array with
D = 35, corresponding to the permutation

[7,17,15,16,2,11,8,13,5,1,12,18,3,10,4,6,14,9]

and displayed in Figure 10. This Costas array is symmetric about a diagonal.
It is not explained by any known construction [1].
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(a) Order 18 (b) Order 22

Figure 9. Deficiency distribution for inequivalent Costas
arrays of order 18 and 22
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Figure 10. Order-18 Costas array with D = 35
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The order-22 distribution, shown in Figure 9(b), contains a Golomb-
Rickard spike at D = 19 and a Welch spike at D = 72 (which includes
one non-Welch Costas array that is toroidally equivalent to a Welch Costas
array under cyclic permutation of its rows). After disregarding these, there
remains one outlying bar representing three Costas arrays with D = 83,
corresponding to the permutations

[1,13,7,10,20,15,6,22,14,18,16,17,5,11,8,21,3,12,19,4,9,2],

[2,1,13,7,10,20,15,6,22,14,18,16,17,5,11,8,21,3,12,19,4,9],

[5,15,4,7,21,3,19,14,1,16,9,22,2,10,6,11,13,20,18,17,8,12].

These arrays are not explained by any known construction [1]; the first two
are toroidally equivalent under cyclic permutation of their columns.

We conclude that the deficiency distributions act as a filter, allowing us
to recognise one order 18 and three order 22 Costas arrays as exceptional.
Could these examples be used to identify a new algebraic construction for
Costas arrays?

5. Toroidal vectors in augmented Welch Costas arrays

In Section 3 we used the augmented Golomb Costas array G++ to explain
the outlying minimum deficiency values in Table 6. In Definition 5.1 below,
we define the augmented array A+ of a permutation array A. We then show
in Theorem 5.2 that the augmented array W + of a Welch Costas array W
contains every possible toroidal vector exactly once.

Definition 5.1. Let A be a permutation array of order n. The augmented
array A+ associated with A is the (n + 1) × n array formed by adding a row
of 0s on the bottom of A.

Theorem 5.2. Let W be a W1(p, φ, c) Costas array. Then the p × (p − 1)
augmented array W + contains every toroidal vector (w,h) ∈ {1, . . . , p − 2} ×
{1, . . . , p − 1} exactly once.

Proof. Let (w,h) ∈ {1, . . . , p−2}×{1, . . . , p−1}. By the Welch construction,
the toroidal vector (w,h) occurs in W + starting from position (i, j) if and
only if there exist i, j ∈ {1, . . . , p − 1} such that

i ≡ φj+c−1
(mod p) and(5.1)

i + h ≡ φj+w+c−1
(mod p).(5.2)

(Equation (5.2) does not introduce solutions involving a ‘1’ entry in the
additional row of W +, because solutions with i + h = p cannot occur.) Mul-
tiply the first congruence by φw and subtract the second congruence to give
i(φw −1) ≡ h (mod p). This has a unique solution for i ∈ {1, . . . , p−1}, since
φw ≠ 1. Then (5.1) has a unique solution for j ∈ {1, . . . , p − 1}. �

Theorem 5.2 is not new, but we have included it in order to demonstrate
connections with earlier sections of this paper and with the work of several
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other authors. Golomb and Moreno [9] defined an order-n Costas array A to
correspond to a circular Costas sequence if A+ contains every toroidal vector
(w,h) ∈ {1, . . . , n− 1}× {1, . . . , n} exactly once. Rephrased in this language,
Theorem 5.2 states that every Welch Costas array corresponds to a circular
Costas sequence. In 1996, Golomb and Moreno [9] conjectured that the
reverse implication also holds, and proved the partial result that an order-n
circular Costas sequence exists only when n+ 1 is prime. Q. Wang reported
(personal communication, Sep. 2014) that this conjecture was proved in [10].
Drakakis, Gow and McGuire [4] explored the relationship between almost
perfect nonlinear permutations and Costas arrays; their Theorem 3 can be
seen to be equivalent to Theorem 5.2 of this paper. Part of the discussion
of Section II.C of Beard et al. [2] can also be interpreted in terms of the
toroidal vectors of W +. Theorem 5 of Drakakis, Gow and Rickard [5] states:
“All possible distance vectors are contained within a Welch Costas array
(assuming the array wraps around at the boundaries).” This should not
be understood to mean that a Welch Costas array of order p − 1 has zero
deficiency (which is not the case); instead, the array wrapping should be
interpreted as occurring with period p−1 for the columns but with period p
for the rows, and the statement then coincides with Theorem 5.2.
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